

FLIGHTWEIGHT ELECTRO-MAGNET SYSTEMS

Roy Goodrich Louisiana State University

Collaborators

Dianne Schmidt
NASA, MSFC
Tony Robertson
NASA, MSFC
Ron Litchford
NASA, MSFC
Bobby Pullam
NHMFL, Tallahassee
NHMFL, Los Alamos

Outline

- Introduction
- Aluminum Coil Design
- Aluminum Coil Test Results
- Low T_c Superconducting Coils
- Flux Pump
- **♦** Future of High T_c Coils

Introduction

Need for Lightweight Electromagnets

- ♦ Ion thrusters and Hall thrusters already conceived for the future.
- ♦ Magneto-plasma Dynamic Thrusters and Pulsed Induction Thrusters could become more conceivable.

Overall Program to produce lightweight magnets:

- **♦** Produce a lightweight non-superconducting large bore magnet operating in a pulsed mode.
- ♦ Produce a lightweight low temperature superconducting large bore magnet operating in a continuous mode to determine characteristics and shielding required for high temperature confinement of fast ions.
- ♦ Produce a lightweight high temperature superconducting large bore magnet operating in a continuous mode.
- Develop low mass, low energy power supplies for the two superconducting magnets.

Design Considerations - 77 K Coil

- ♦ Light weight Aluminum
- ♦ Low Electrical Resistance Aluminum
- ♦ Low Magneto-resistance Aluminum

Design Considerations: Low Temperature Superconducting Coil

- ♦ Well Characterized Nb₃Ti
- ♦ Economical and Commercially Available Nb₃Ti
- ♦ Known Methods for Superconducting Electrical Connections to operate in persistent current mode.
- ◆ Use to determine cryogenic shielding environment required through laboratory testing.

Flux Pump Power Supply

- ♦ Light weight
- ♦ Low power consumption continuous operation.

Design Considerations: High Temperature Superconducting Coils

♦ Operate at near persistent current mode between 20 and 25 K.

Materials Characteristics for Three Construction Phases

The overall resistance of aluminum should be greatly reduced from its room temperature value at 77 K reducing power requirements. For successful operation the magneto-resistance should be low at the magnetic fields at which it operates.

- At 4 K Nb₃Ti is the material of choice because it is readily available in wire form and has been used successfully for the construction of superconducting magnets operating to 5 T at 4 K for many years. Special consideration to shielding and cryogenics design will be given in this part of the project.
- For operation at 20 25 K BiSrCaCuO is the suggested material because high critical current wires of this material can be purchased commercially and

will operate in a self produced field of 2 T at 20 - 25 K.

Aluminum Coil Design

Results of Measurement of Magneto- Resistance of Al Coil

Completed Coil

Test Specifications

- 1. Charge Voltage = $3.21 \cdot 10^3$ Volts.
- 2. Maximum Current = $1.18 \cdot 10^3$ Amps.
- 3. Field per amp = 1.73 mTesla/Amp
- 4. Temperature Rise = 20 K from 77 K.
- 5. Cool down time after each pulse < 60 sec.

Low Temperature Superconducting Coil Design

Flux Pump Schematic Diagram

Al Coil Magneto-Resistance Tests NHMFL - Tallahassee

Al Coil in Pulse Field Testing Facility NHMFL - Los Alamos

Al Coil with Dewar Parts LSU Machine Shop

Diminsions of Coil and Dewar

Coil - 6" Diameter by 11.5" Length

Dewar - 12.5" Diameter by 20" Length

Mass of Coil and Form - 3.69 Kg

Mass of System (Excluding End Flanges for laboratory system) - 15.58 Kg.

Current Status

- 1. An Al Coil for Pulsed Fields to 2 tesla has been constructed and completely tested.
- 2. A low temperature superconducting coil and associated cryogenics to produce 2 tesla in a 6' bore has been designed.
- 3. A flux pump power supply has been designed.
- 4. A High temperature superconducting coil and flux pump is planned for the future.